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1. Introduction

Tachyon condensation in various string constructions has become increasingly important as

a set of clean examples of time-dependent systems in string theory and as a dynamical con-

nection between varying states of string theory. The most famous example is condensation

of the open string tachyon on either an unstable D-brane or a D-brane/anti-D-brane pair;

Sen’s conjecture, which has by now considerable supporting evidence, states that tachyon

condensation annihilates the branes and leaves a purely closed string state behind (see [1 –

4] for reviews). In fact, recent work has found an exact dynamical solution connecting the

unstable brane system to the closed string vacuum in string field theory [5].

Closed string tachyons have also generated a great deal of interest, beginning with

tachyons localized at special points in space [6 – 18]. For example, tachyons can develop

at orbifold fixed points with conical singularities; tachyon condensation appears to reduce

the rank of the orbifold group and eventually resolve the singularity.

Of course, bosonic string theory (and various nonsupersymmetric heterotic theories)

has a nonlocalized “bulk” closed string tachyon. Bulk closed string tachyon condensation

seems to realize the conjecture of [19 – 21] that the closed string tachyon “vacuum” is

a bubble of nothing along the lines of [22]. Bulk tachyon condensation has been studied

in [23 – 35]; roughly speaking, the tachyon generates a mass for some of the worldsheet fields,

effectively turning off propagation and oscillation of strings in the corresponding dimensions
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of spacetime. Therefore, as the tachyon condenses, spacetime loses dimensionality; central

charge is unchanged during tachyon condensation because the dilaton background changes

at the same time [25]. Perhaps the natural tachyon profile to consider is exponential

growth in a timelike direction; these tachyon profiles have α′ corrections that are suppressed

in supercritical string theories with large dimensionality D [25]. However, the cleanest

results have been achieved in backgrounds in which the tachyon grows exponentially along

a lightlike direction; this tachyon profile is an exact solution of perturbative string theory at

all orders in α′ [28 – 30]. (Of course, there are still corrections at nonzero string coupling.)

Compared to these impressive results in worldsheet physics, our understanding of

closed string tachyon condensation in spacetime is somewhat behind. Some progress has

been made in developing the effective field theory of massless closed strings and tachyons,

including some solutions of that theory [36 – 38], though a fully consistent action has only

been described recently [39]. Nonetheless, it has been proposed that tachyon condensation

could provide a stringy resolution of cosmological singularities [16, 40]. This proposal was

taken a step farther in [41], which assumed the Big Bang could be replaced by emergence

from a tachyon condensate and asked what quantum mechanical perturbations are gen-

erated by the time dependence of the tachyon; these fluctuations could potentially serve

as the initial values for inflationary perturbations. That paper used a somewhat heuris-

tic worldsheet Hamiltonian approach to calculate particle production and found that the

late-time fluctuations are a thermal state at the energy scale set by the tachyon gradient.1

In this paper, we reconsider particle production in a background of tachyon conden-

sation, working in the usual picture that the tachyon grows toward the future. Our goal

is to determine if quantum fluctuation of massless string states, in particular the dilaton,

backreact significantly on known classical tachyon backgrounds. We proceed by using con-

formal perturbation theory to determine how massless strings propagate in a weak tachyon

background. We then solve the modified equation of motion and calculate the quantum

source for the dilaton (analogous to finding the quantum mechanical stress-energy tensor

in a cosmological background). We find that backreaction can be large even when most gs

corrections are small. Although we focus on backreaction in this paper, the reader should

note that the amplitude calculation we have done (and similar calculations) are useful for

confirming the effective action of [39].

The plan of this paper is as follows. In section 2, we review the tachyonic backgrounds

of bosonic string theory that we consider. We also show directly that the lightlike tachyon

background is a conformal field theory on the worldsheet.2 Then, in section 3, we calculate

the scattering amplitude of a tachyon and two massless string states. (The appendix

contains a review of the BRST quantization of the string in the linear dilaton background,

which is useful for the calculation of this amplitude.) In conformal perturbation theory,

this amplitude gives the modified propagator of the massless states in a weak tachyon

background, which directly tells us the modified equation of motion for perturbations of

1Cosmological questions relevant to open-string tachyon condensation have recently been addressed

in [42].
2We thank S. Hellerman for his patient explanation of this calculation.

– 2 –



J
H
E
P
0
8
(
2
0
0
8
)
0
5
3

the massless fields. Finally, in section 4, we calculate the quantum mechanical source for

the dilaton, which we show to be large in many circumstances.

2. Review of bulk tachyon condensation

In this section, we review known results about closed string tachyon condensation from

the worldsheet perspective. Rather than consider tachyons localized at some point in the

spacetime (such as a shrinking circle or a nonsupersymmetric orbifold fixed point), we will

restrict our attention to the bulk closed string tachyons of the bosonic theory. We will

mostly discuss tachyons with a lightlike gradient as discussed in [28 – 30], since they are

uncorrected in α′, but we will also show how our discussion carries over for tachyons with

a timelike gradient.

We begin by reminding the reader of allowed tachyon backgrounds in supercritical

string theory, largely following [25, 28]. Then we show explicitly that the conformal

anomaly vanishes for the lightlike tachyon gradient. As far as we know, this proof has

been known for some time but has not appeared in the literature [43].

A brief note on conventions: we take lightcone coordinates so that the Minkowski

metric is

ds2 = −(dX0)2 + (dX1)2 + d ~X2 = −2dX+dX− + d ~X2 . (2.1)

2.1 Tachyon vertex operator

In order to control worldsheet corrections to tachyon condensation, we work in a linear

dilaton background, typically in large supercritical dimension D. (In fact, we will typically

consider the tachyon to be a small perturbation to the linear dilaton.) In the string frame

(i.e., the spacetime fields that couple to the string variables), the metric is Minkowski

and the dilaton takes the form Φ = VµX
µ with V 2 = (26 − D)/6α′. The linear dilaton

background is a well-known exact solution of tree-level string theory [44]. We choose the

dilaton to decrease into the future, V0 = −
√

(D − 26)/6α′. We can also consider a tachyon

background in the critical dimension D = 26, in which case we take only V− to be nonzero;

typically, though, we will work in supercritical dimension.

As has been observed, for example in [25], the condition for a tachyon vertex operator

to have the correct weight in a general linear dilaton background is

∂µ∂
µT (X) − 2V µ∂µT (X) +

4

α′
T (X) = 0 . (2.2)

Due to the tachyonic mass term, the solution will have some time dependence, which we

take to be exponential in either X0 or X+.

It is easy to check that

T (X) =
µ2

0

2
eβX+

(2.3)
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solves (2.2) for β = 2/V +α′. In most string theories, this solution represents a bubble of

nothing.3 Of more interest to us is a tachyon with some spatial dependence,

T (X) =
µ2

2α′
eβX+

: (Xa)2 : +δT (X) . (2.4)

Here, (Xa)2 is a sum over N of the transverse spatial directions (rather than all the

spatial dimensions). (The reader should note that these are transverse dimensions, so we

necessarily have N ≤ D−2.) We include δT in order to solve the equation of motion; then

we find

δT (X) =
Nµ2

4

(

βX+
)

eβX+

(2.5)

for the specific solution (of course, (2.3) can be added independently), as explained in [29].

The tachyon with quadratic spatial dependence (2.4) can be written as the long-

wavelength limit of a plane wave, as in [29]. In particular,

T (X) = µ2eβkX+

:ei
~k· ~X : , V +βk =

2

α′
− 1

2
~k2 (2.6)

is a valid tachyon background. Without loss of generality, we can take ~k to point along a

single axis (say the Y direction), in which case (2.4), (2.5) (with N = 1) follow by taking

the k → 0 limit of

T (X) = µ2
0

(

eβX+ − eβkX+

:cos(kY ) :
)

(2.7)

with µ2 = α′µ2
0k

2 fixed. Incidentally, (2.6) shows immediately that, even in the critical

dimension, the lightlike tachyon only solves the equations of motion in a linear dilaton

background.

The story is very similar with a timelike tachyon gradient [25]. The tachyon profile at

fixed momentum is

T (X) = µ2eβkX0

:ei
~k· ~X : , β2

k − 2V0βk =
4

α′
− ~k2 . (2.8)

In the large D limit, we can drop the first term in the quadratic equation for βk, finding

exactly the same dependence as in (2.6). Again, as long as we work in the large dimension

limit, we can take the same ~k → 0 limit to find a background

T (X) =
µ2

2α′
eβX0

: (Xa)2 : +
Nµ2

4

(

βX0
)

eβX0

, (2.9)

where βV0 = −2/α′. These tachyon backgrounds do have α′ corrections, but those correc-

tions are suppressed at large D.

Finally, the reader should note that the tachyon “amplitude” µ2 can be either positive

or negative sign, depending on which way the tachyon rolls off its local maximum. We

have chosen to write the amplitude as a squared mass to make dimensional factors work

out more easily.

3As was explained in [30], this tachyon background beginning in the type 0 string is a transition to the

bosonic string theory.

– 4 –



J
H
E
P
0
8
(
2
0
0
8
)
0
5
3

Figure 1: The only diagrams contributing divergences are those with a single vertex with an

arbitrary number of X+ lines leaving and one X propagator in a loop.

2.2 Conformal invariance

We now remind the reader that the interacting worldsheet theory in the presence of the

tachyon is actually a conformal field theory for the lightlike tachyon gradient. It seems

that this proof has been known for some time but has not yet made its way into the

literature [43]. For simplicity, we work with the ~k → 0 limit of (2.4), (2.5).

To get a string background with a nontrivial tachyon, we can (following the usual

procedure) just exponentiate the tachyon vertex operator in the linear dilaton CFT. The

Polyakov action then becomes

S = − 1

4πα′

∫

d2σ
√−γ

[

∂αX
µ∂αXµ +

µ2

2
eβX+

(

(Xa)2 +
Nβα′

2
X+

)]

+
{i}
4π

(
∫

d2σ
√−γRVµX

µ + 2

∫

∂M
dσKVµX

µ

)

. (2.10)

We have included the contribution from the linear dilaton just to remind the reader that

it is there; the worldsheet boundary includes “boundaries at infinity.” At this stage, it

doesn’t matter whether we are using a Euclidean or Lorentzian worldsheet; the factor of i

in curly braces is appropriate for the Lorentzian case.

Let us make more explicit the correct renormalized (UV finite) form of the action.

Beyond the normal divergences of the free theory, the tachyonic theory only gets UV

divergences from loops with a single propagator (from [29], we know that there are no

diagrams beyond one loop), as illustrated in figure 1. With a point-splitting regulator, the

divergence comes from the coincidence of the two ends of the propagator. In this limit,

then, the divergence is the same as in R
1,1, namely

−Nα
′µ2

4
eβX+

ln
(

∆s2
)

, (2.11)

where ∆s2 is the proper distance between the two ends of the propagator (we have chosen

the coordinate invariant form for obvious reasons).

To write the renormalized action, then, we only need to replace (Xa)2 with the confor-

mally normal ordered version :(Xa)2 :, just as we would guess from the operator treatment.
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(Note that the free action should technically replace (∂X)2 similarly with : (∂X)2 :). This

renormalized action is the proper starting point for the Hamiltonian treatment described

in [41].

By taking the variation of the action with respect to the metric, we find the stress tensor

Tαβ = − 1

α′

(

:∂αX
µ∂βXµ : −1

2
γαβ :∂γX

µ∂γXµ :

)

+ Vµ∇α∇βX
µ − γαβVµ∇2Xµ

+
µ2

4α′
γαβ e

βX+

(

: (Xa)2 : +
Nβα′

2
X+

)

+
Nµ2

4
eβX+ ∆σα∆σβ

∆s2
. (2.12)

The first line of (2.12) is the usual contribution from the kinetic term and the linear dilaton,

while the second line gives the classical and quantum contributions from the tachyon (po-

tential) term. Note that the last, quantum mechanical, term arises from the metric depen-

dence in :X2 :. When properly averaged over possible directions, ∆σα∆σβ → (1/2)γαβ∆s2.

The reader should also be aware that a similar quantum mechanical term should arise from

the normal ordering of the kinetic terms, but it cancels out.

Conformal invariance is simple enough to demonstrate. The trace of the stress tensor

is just

Tα
α = −V−∇2X− +

µ2

2α′
eβX+

(

: (Xa)2 : +
Nβα′

2
X+ +

N

2

)

. (2.13)

We can simplify this expression using the equation of motion for X−, which is

2∇2X− = −βµ
2

2
eβX+

(

: (Xa)2 : +
Nβα′

2
X+ +

Nα′

2

)

. (2.14)

Along with V− = −2/βα′, this yields Tα
α = 0.

In terms of worldsheet lightcone coordinates on a flat worldsheet, we find the usual

stress tensor

T++ = − 1

α′
:∂+X

µ∂+Xµ : +V−∂
2
+X

−

T−− = − 1

α′
:∂−X

µ∂−Xµ : +V−∂
2
−X

− . (2.15)

As usual, the central charge from the total dimensionality, linear dilaton, and conformal

ghosts cancel. The tachyon does not contribute to the central charge at all.

3. Propagation in the weak tachyon region

In this section, we compute the string perturbation theory amplitude for a single tachyon

and two massless strings in a linear dilaton background. This amplitude provides the first

order correction to the massless string action in the tachyon background. We can then

see how the massless mode propagation differs in the presence of a weak tachyon. In this

section, we work on a Euclidean worldsheet with complex coordinates z, and we work at

tree level in string perturbation theory.

– 6 –
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3.1 Tachyon modification to action

The propagation of massless string modes will be modified by scattering off the tachyon

background; the one-tachyon/two-massless-string amplitude gives the shift in the two-point

massless correlation function and therefore the action for the massless strings. Since we

want to think of massless string scattering from the tachyon background, at lowest order we

should calculate the string diagram with three vertex operators. (Higher order calculations

in the tachyon amplitude correspond to adding more tachyon vertex operators.)

The two massless string vertex operators are given by

e1,2
µν :∂Xµ∂̄Xνeik1,2·X : (z1,2, z̄1,2) , (3.1)

in which the polarization tensors and momenta obey the gauge conditions given in (A.9).

In particular, the mass-shell and gauge conditions are

k1,2 · (k1,2 + 2iV ) = 0 , e1,2
µν (k1,2 + 2iV )ν = e1,2

νµ (k1,2 + 2iV )ν = 0 . (3.2)

For ease of calculation, we will use the plane-wave tachyon vertex operator (2.6), and we will

combine the X+ and Xi exponentials into a single exponential with relativistic momentum

k3
µ. We will not concern ourselves with the overall scaling of the vertex operators, instead

normalizing the final shift of the action to get the correct dimensionality.

Since there are only three vertex operators, we work with the fixed-position form of

the amplitude (up to normalization)

A=e1µνe
2
λρ

〈

:∂Xµ∂̄Xνeik1·X : (z1, z̄1) :∂Xλ∂̄Xρeik2·X : (z2, z̄2) :eik3·X : (z3, z̄3)
〉

×(ghosts) .

(3.3)

The vertex operator positions zi ∈ C are arbitrary fixed positions on the worldsheet.

The path integral over the Xµ zero modes gives a momentum preserving delta-function;

however, in the linear dilaton background, the sum of momenta also includes the dilaton

gradient V µ (see, for example, exercises in [44]). Therefore, we have

A ∝ (2π)DδD

(

∑

i

ki + 2iV

)

. (3.4)

The ghost contribution is unchanged from that in the Minkowski background of critical

string theory. The expectation value can be simplified through the use of (3.2) to read

A = (2π)DδD

(

∑

i

ki + 2iV

)

e1µνe
2
λρ |z12|α

′k1·k2 |z13|α
′k1·k3 |z23|α

′k2·k3

×
(

ηµλ − α′

8
kµ
23k

λ
13

)(

ηνρ − α′

8
kν
23k

ρ
13

)

, (3.5)

where zij = zi − zj and similarly for kij .

We get the physically meaningful amplitude (again, up to dimensionful normaliza-

tions) by using a coordinate transformation to choose values of the vertex operators. A

– 7 –
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particularly convenient choice is z1 = 0, z2 = 1, z3 → ∞; this limit is well defined due to

momentum conservation and the appropriate mass-shell conditions. We end up with

A = (2π)DδD

(

∑

i

ki + 2iV

)

e1µνe
2
λρ

(

ηµλ − α′

8
kµ
23k

λ
13

)(

ηνρ − α′

8
kν
23k

ρ
13

)

. (3.6)

In the effective theory of the massless strings, this amplitude just corresponds to a

shift in the quadratic part of the action. We will specialize to the graviton and dilaton. In

that case, the polarization tensor becomes

e1,2
µν = hµν(k1,2) + γφ(k1,2)ηµν , (3.7)

where γ is a numerical coefficient. We can now Fourier transform back to spacetime to get

the change in the quadratic action in the presence of a tachyon background. We keep all

terms up to second order in derivatives and find

∆S = µ2

∫

dDx e−2V ·Xeik·X
[

4 (hµν +γφηµν) (hµν +γφηµν)+α′(∂+ik)νhµλ(∂+ik)µhν
λ

+2γα′(∂ + ik)µhµν(∂ + ik)νφ+ γ2α′(∂ + ik)µφ(∂ + ik)µφ

−1

4
α′2kλ(∂ + ik)νhµλk

ρ(∂ + ik)µhνρ −
1

2
γα′2k · (∂ + ik)hµνk

µ(∂ + ik)νφ

−1

4
γ2α′2k · (∂ + ik)φk · (∂ + ik)φ − 1

8
α′2hµν(∂ + ik)µ(∂ + ik)νhλρk

λkρ

−1

8
γα′2k2hµν(∂ + ik)µ(∂ + ik)νφ− 1

8
γα′2φ(∂ + ik)2hµνk

µkν

−1

8
γα′2k2φ(∂+ik)2φ− i

4
α′2hµνk

µ(∂+ik)νhλρk
λkρ− i

4
γα′2φk ·(∂+ik)hµνk

µkν

− i

4
γα′2k2kµhµν(∂ + ik)νφ− i

4
γ2α′2k2φk · (∂ + ik)φ

]

. (3.8)

We have restored prefactors, choosing them to get a dimensionless action; hµν and φ are

canonically normalized in D dimensions, and µ is the mass scale of the tachyon background.

We have also dropped the subscript “3” on the tachyon momentum for notational conve-

nience. Notice that the action (3.8) is complex; this is not surprising because we are so

far working with a complex plane wave tachyon background. Once we convert to a real

tachyon background, the action will be real.

3.2 Modified equations of motion

Since we are interested in the propagation of particles through the tachyon background,

we now turn to the equations of motion, which has an effect even at the linear level. Since

the key physics is the same for both the graviton and the dilaton, we will focus henceforth

on the (slightly simpler) dilaton equation of motion. In addition, we will set graviton

fluctuations to zero from this point; while dilaton fluctuations necessarily source graviton

fluctuations, this mixing is not new to tachyonic backgrounds. Part of the mixing of the

dilaton and graviton is due to working in string frame, and part arises already in the pure

linear dilaton background. In order to focus on the new physics, then, we just set the

graviton fluctuations to zero.

– 8 –
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The new contribution to the dilaton equation of motion from (3.8) is then

δ(∆S)

δφ
= γ2µ2eik·Xe−2V ·X

[

8Dφ− α′(∂ − 2V ) · (∂ + ik)φ

+
1

2
α′2k · (∂−2V )k · (∂+ik)φ− 1

8
α′2k2(∂+ik)2φ

−1

8
α′2k2(∂−2V )2φ− i

4
α′2k2k · (∂+ik)φ+

i

4
α′2k2k · (∂−2V )φ

]

. (3.9)

We should now switch over to a real background for the tachyon. Since we are most

interested in the time dependence of the system, we will take the long wavelength limit

of (2.4), (2.5) and (2.9) for the lightlike and timelike tachyon gradients respectively. For

example, in the lightlike case, we set

k+ = −iβk , k− = 0 , ki = kδia (3.10)

for a quadratic term in a specific direction Xa and then sum over the contributions for N

such directions. In the following, we use subscripts i to represent all (transverse) spatial

dimensions, while subscripts a represent only those spatial dimensions on which the tachyon

depends quadratically.

In the lightlike tachyon background (2.4), (2.5), the shift in the dilaton equation of

motion becomes

δ(∆S)

δφ
= 2γ2T (X)e−2V ·X

{

4Dφ+ α′ [(∂+ + β)(∂ − 2V )−φ+ ∂−(∂ − 2V )+φ− ∂i∂iφ]

+
1

4
α′2β2∂−(∂−2V )−φ

}

+
1

2
γ2α′µ2eβX+

e−2V ·X

{

−∂a∂aφ+
1

2
Nβ(∂−2V )−φ

−1

2
N∂−∂+φ+

1

4
N∂i∂iφ+

1

4
(∂−2V )2φ

}

−2γ2µ2eβX+

e−2V ·XXa

{

∂aφ

−1

4
α′β(∂−2V )−∂aφ−

1

4
α′β∂−∂aφ

}

. (3.11)

The timelike tachyon background (2.9) yields a similar result, which is not illustrative

enough to repeat. Now we note that the complete dilaton equation of motion in the linear

dilaton background is

δS

δΦ
=

√−ge−2Φ
[

−8V 2 − 2R + 8∂µΦ∂µΦ − 8∇2Φ
]

, (3.12)

where 4V 2 is the cosmological constant due to the supercritical dimension. We write

Φ = Φ0 +VµX
µ +κφ and linearize to find the equation of motion for fluctuations at zeroth

order in the tachyon background.4 Combining, we find the equation of motion to first order

4κ, the D-dimensional Planck constant, is included so that the fluctuation φ has canonical dimension

(and normalization up to constants of order unity).

– 9 –
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in the tachyon background, which is

0 =
(

∂2 − 2V · ∂
)

φ− 1

4
γ2T (x)

{

4Dφ+ α′β(∂ − 2V )−φ+
1

4
α′2β2∂−(∂ − 2V )−φ

}

− 1

16
γ2µ2α′eβX+

{

1

2
Nβ(∂ − 2V )−φ− ∂a∂aφ+

1

2
NV · ∂φ− 1

2
V · (∂ − 2V )φ

}

+
1

4
γ2µ2eβX+

Xa∂a

{

φ− 1

4
α′β(∂ − 2V )−φ− 1

4
α′β∂−φ

}

(3.13)

for the lightlike tachyon. Note that, since we are working to first order in the tachyon, we

were able to remove terms from (3.11) that are proportional to the linearized (3.12).

For completeness, we also list the linearized dilaton equation of motion for the timelike

tachyon background. It is

0 =
(

∂2 − 2V · ∂
)

φ− 1

4
γ2T (X)

{

4Dφ+ α′β(∂ − 2V )0φ+
3

8
α′2β3(∂ − 2V )0φ

+
3

16
α′2β4φ+

1

2
α′2β3V0φ+

1

4
α′2β2V 2

0 φ+
1

4
α′2β2∂0(∂−2V )0φ

}

− 1

16
γ2µ2α′eβX0

{

1

2
Nβ(∂ − 2V )0φ−NV 2

0 φ− 3

2
Nβ2φ− ∂a∂aφ− 2NβV0φ

}

+
1

4
γ2µ2eβX0

Xa∂a

{

φ− 1

8
α′β2φ− 1

4
α′β(∂ − 2V )0φ− 1

4
α′β∂0φ

}

. (3.14)

Before moving on, we should pause to reflect on the various parts of (3.13), (3.14).

First of all, there are time dependent mass terms, including contributions from the fact

that the vertex operator for φ includes polarizations in the N spatial directions annihilated

by the tachyon. Next, there are time dependent drag terms due to the tachyon gradient and

an extra contribution due to momentum in the Xa directions. Also, there are terms with

second order (lightcone) time derivatives, which are reminiscent of the shift in the spacetime

metric found in [25, 29] through renormalization of the worldsheet theory. Finally, there

are terms of the form XaPa. Many of these terms were anticipated by the Hamiltonian

calculation carried out in [41].

4. Backreaction

We now have the pieces we need to study quantum backreaction effects in tachyon con-

densation, working self-consistently in the region of spacetime that has both small string

coupling and small tachyon condensate. We will see that the backreaction due to quantum

particle production can become strong even in that region.

As a brief review, [41] studied particle creation in the time-reversed background using

an approximate equation of motion derived with a simplified Hamiltonian treatment of the

string, concluding that the tachyon “decondensation” resulted in a thermal bath at inverse

temperature β, which is about the string scale, created as the tachyon vanishes. Since the

Bogoliubov coefficients are simply conjugated under time reversal, we expect a thermal

state of temperature 1/β, but this thermal bath is created as the tachyon becomes strong.
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We actually find a much stronger source of backreaction. We will begin by solving the

dilaton fluctuation equation (3.13), (3.14) in a truncated form; then we present numerical

calculations of the strength of the backreaction.

4.1 Solutions

We are most interested in the time dependence of the dilaton equation of mo-

tion (3.13), (3.14), so we truncate the somewhat complicated spatial dependence (that

is, the appearance of both spatial derivatives and spatial positions in the differential equa-

tion). Specifically, we will work with

[

∂2
t − 2Vt∂t + k2 +m2eβt (c1 + c2∂t)

]

φ = 0 , (4.1)

where t = X0 is the usual time coordinate. We obtain this simplified equation of motion by

setting Xa to a small value in either (3.13) or (3.14), then treating Xa as a constant while

Fourier transforming to momentum space. (In addition, we set X1 = 0 and dropped X1

derivatives in the lightlike gradient case.) We also ignore the subleading (nonexponential)

time dependence in the tachyon profile T . We have also combined many of the constants

into single variables (m2, c1, c2) for notational convenience. It is also helpful, of course, to

rewrite the equation of motion in terms of x = βt, which gives

[

∂2
x + 2V ∂x + k2/β2 +M2eβt (a+ b∂x)

]

φ = 0 . (4.2)

For reference, the constants appearing in (4.2) are

V = |Vt/β| = α′V 2
t /2 = (D − 26)/12

M2 = γ2µ2(XaXa)/8α′β2 (4.3)

In the lightlike case,

a = 4D − 2α′β2Vt −
1

4
α′2β2k2 −

(

α′2

(Xa)2

)(

1

2
V 2

t +
1

2
NβVt

)

b = α′β2 +

(

α′2

(Xa)2

)(

1

4
Nβ2 − 1

4
(2N + 1)βVt

)

, (4.4)

and, in the timelike case,

a = 4D − 2α′β2Vt −
1

4
α′2β2k2 − 1

4
α′2β3Vt +

3

16
α′2β4 +

1

4
α′2β2V 2

t

−
(

α′2

(Xa)2

)(

3

2
NβVt +

1

2
NV 2

t +
3

4
Nβ2

)

b = α′β2 +
3

8
α′2β3 +

(

α′2

(Xa)2

)(

1

4
Nβ2

)

. (4.5)

In our study, we will study a simplifying limit in which the parameters a and b coincide

for the lightlike and timelike tachyon cases. First, we work in the large D limit (which
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is where the timelike tachyon background is reliable anyway). We also set N ∼ 1 and

(Xa)2 ≫ Dα′. In this limit,

a = 4D , b = α′β2 (4.6)

in either case; the most important parameters for us will turn out to be V = D/12 and

a/b = D2/6 = 24V 2 in this limit. It is also important to note two features. First is that

M2 may take either sign, depending on the sign of the tachyon (recall that µ2 may be

positive or negative). Second, note that the tachyon amplitude is controlled by M2b.

The solution to (4.2) is

φ
(

x,~k
)

=e−V x
[

AeνxM
(

ν+
a

b
; 1+2ν;M2bex

)

+Be−νxM
(

−ν+
a

b
; 1−2ν;M2bex

)]

,

(4.7)

where ν =
√

V 2 − k2/β2. The function M , also denoted 1F1, is the Kummer or confluent

hypergeometric function. These solutions match to positive and negative frequency modes

in the far past, with frequency given by ν, though those modes are real exponentials at

long wavelengths (real ν). Both the solutions grow rapidly as exp[M2bex] in the future,

but the tachyon is no longer a perturbation of the background by then; we can trust (4.7)

only for t < −(1/β) lnM2b.

4.2 Source term estimates

To study the backreaction of quantum fluctuations of the dilaton, we can examine the

dilaton equation of motion in the linear dilaton background. Including the expectation of

quantum fluctuations, this is

VµV
µ + ∇2Φ − ∂µΦ∂µΦ − 〈κ2∂µφ∂

µφ〉 = 0 , (4.8)

where Φ is the background dilaton plus fluctuation Φ = Φ0 + VµX
µ + κφ. (κ is given by

the D-dimensional Planck scale since φ is of canonical dimension while Φ is dimensionless.)

The quantum fluctuation yields a source term through the last term in (4.8); backreaction

will be important when 〈κ2(∂φ)2〉 & D/α′ ∼ |VµV
µ|

The expectation value 〈κ2(∂φ)2〉 is given by the average of the fluctuations on the

length scale 1/Vt, the only scale of the cosmological linear dilaton background. In partic-

ular, we choose the momentum scale Vt rather than β because Vt, like the Hubble scale in

cosmological backgrounds, is the scale at which fluctuations switch from frozen or growing

behavior to oscillatory behavior. (In fact, short wavelength fluctuations behave just like

free massless fields, which do not contribute to the source term at all.) The reader may

wonder if we can trust our equation of motion (4.2) at wavenumbers beyond 1/
√
α′ when

|Vt| > 1/
√
α′ since α′ corrections should enter at that wavenumber. We will address this

point below.

We see that we need to calculate

〈κ2(∂φ)2〉 = κ2

∫ |Vt|

0

dk

(2π)D−1
kD−2

(

k2|φ|2 − |φ̇|2
)

. (4.9)

The momentum modes in this integral are precisely those with the real exponential behavior

in the far past; in order to avoid large backreaction at infinite wavelength in the far past,
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Dimension 48 72 96 120 144 168 192 216 240 360 480

log(ID(24/D)D/2) z = 1 53 87 123 160 198 237 277 317 358 571 792

z = −1 19 40 54 74 95 118 140 163 187 315 452

log(ID(24/4π2D)D/2) z = 1 15 30 46 64 83 103 124 145 167 284 409

z = −1 -20 -17 -22 -22 -20 -16 -13 -9 -4 28 69

Table 1: The (base-10 log of the) integral ID calculated with V = D/12 and a/b = D2/6 for a

range of dimensionalities.

we require that the integration constant B = 0. Then, for proper normalization, we should

take A =
√

−i/βν. (If we want to start in a vacuum state at the point where the string

coupling of the linear dilaton becomes small, we should have a small admixture of B, but

this should not change our results significantly.)

Defining

φ(x) =

√

− i

βν
e−V xσ(z) , z = M2bex , (4.10)

we find

〈κ2(∂φ)2〉 =
κ2βDe−2V x

(2π)D−1

∫ V

0
dν
(

V 2 − ν2
)(D−3)/2

(

(

V 2 − ν2
)

|σ|2 − |V σ − z∂zσ|2
)

.

(4.11)

To determine the extent of the backreaction when the tachyon becomes important, we

should study this integral at z = ±1. This is easiest to approximate for a large dimension-

ality D. As discussed at the end of the last subsection, V = D/12 and a/b = 24V 2 in that

limit. Finally, the Planck scale is given by κ2 ∼ (2π)D−3α′(D−2)/2e2Φ0 , so we find

〈κ2(∂φ)2〉 ≈ g2
s

α′

(

24

D

)D/2

ID , (4.12)

with ID the integral from (4.11). Here, gs is the string coupling at the time we study, when

the tachyon amplitude M2bex reaches order unity.

We have integrated ID numerically for several values of the dimensionality up to D =

480 for both signs of the tachyon (i.e., z = ±1). We find that ID grows much more quickly

than DD/2 in either case; in fact, even if we ignore the factors of 2π in the Planck scale, the

backreaction can still become large, since ID appears to grow even faster than (2π)DDD/2.

For example, ID becomes larger than (2π)DDD/2 for z = −1 at D & 240, while it is 167

orders of magnitude larger for z = 1 at that dimensionality. These results are summarized

in table 1. We stress that the top row gives the best estimate of the source term; the second

row is given as a (very) conservative lower limit.

As mentioned above, a cautious reader will not trust equation (4.2) for wavenumbers

k & 1/
√
α′ because string worldsheet corrections should become important at that scale.

Therefore, to be cautious, we consider summing over only momenta up to k = 1/
√
α′. There

are two points to make before presenting the results. First, Vt is smaller than the string scale

as long as D ≤ 182, so the correct results are those of (1) for those dimensions. Second, it

may not be necessary to cut off the integral at k ∼ 1/
√
α′ if we are only concerned with time

– 13 –
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Dimension 192 216 240 360 480 540 600 660

log(ID(24/D)D/2) z = 1 80 90 100 151 201 226 251 277

z = −1 -55 -60 -67 -100 -133 -149 -166 -183

Table 2: The integral ID calculated with V = D/12 and a/b = D2/6 for a range of dimensional-

ities. In this case, the lower limit of the integral is V − 1/4.

b
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Figure 2: Regions of strong coupling (horizontal shading), strong tachyon (cross-hatched shad-

ing), and possible strong backreaction (diagonal shading) for timelike (a) and lightlike (b) tachyon

gradients.

dependence, since the time derivative of the dilaton fluctuation is always smaller than the

linear dilaton gradient, the natural scale of the problem. In any case, though, to be cautious,

we present results at some large dimensions with a upper momentum cut-off of k = 1/
√
α′.

This just changes the upper integration limit of (4.9) to 1/
√
α′. In equation (4.11), the

lower integration limit becomes ν =
√

V 2 − 1/α′β2 =
√

V 2 − V/2 ≈ V − 1/4. Adding

this lower limit restricts the backreaction a great deal. In the case of negative tachyon

sign (z = −1), we find that the backreaction is neglible for large D (and decreasing as D

increases). However, the negative sign tachyon still gives a large (and increasing) source

term at large D. These results are summarized in table 2.

4.3 Discussion

From the above calculations, it appears that the only way to avoid (severe) backreaction

effects at large D is to tune the string coupling to be extremely small at the time the

tachyon becomes strong. We stress that backreaction can be quite significant well into the

region of perturbative string coupling. The backreaction is, in fact, perturbative in the

string coupling, but the coefficient of g2
s is much larger than unity.

In the case of timelike tachyon gradient, this is not burdensome, since we usually

assume the strong coupling regime to be far in the past in order to use weakly coupled

string theory. Keeping the backreaction under control just means that we push the strongly

coupled region even further into the far past. As a caution, though, just due to the large

numbers involved, it seems like backreaction may be important even at times well before

the tachyon background becomes strong. In this case, we can ask whether any effects

can propagate from a region of significant backreaction. Since any string matter generated
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Dimension 48 72 96 120 144 168 192 216 240 360 480

∆t z = 1 15 17 18 18 19 19 20 20 21 22 23

z = −1 5 8 8 8 9 10 10 10 11 12 13

Table 3: The number of string times needed to separate the strong coupling and strong tachyon

regions in order to avoid backreaction at the time of strong tachyon. These results use the calcula-

tions in table 1.

through backreaction only generates effects of order gs or higher, we expect that having the

strong tachyon region in sufficiently weak string coupling will render backreaction effects

negligible. However, it is possible to imagine a scenario in which the backreaction (in a

region of both weak coupling and weak tachyon) could either cause the dilaton to grow

again or accelerate the growth of the tachyon, leading to difficulties with the usual picture.

Of course, it seems that ensuring the string coupling is sufficiently weak for a very long

time before the tachyon becomes important can control backreaction effects. Therefore, it

is important to stress that the strong coupling era must end quite some time before the

tachyon becomes strong. As a reference, in table 3, we list the number of string times the

strong coupling and strong tachyon regions must be separated by (at a bare minimum) to

avoid strong backreaction effects in some cases.

The situation is slightly more complicated in the case of a lightlike tachyon gradient.

In that case, there is always a region where the tachyon is large and the dilaton is not

extremely small. In other regions where the tachyon is strong, of course, the dilaton will

be extremely small, so backreaction will be negligible; the main question is whether any

effects can propagate from the region of important backreaction, as discussed above. Once

again, we expect that sufficiently small string coupling will control the backreaction. The

regions of significant backreaction are summarized in figure 2.

Of course, we have so far only carried out a rough calculation of the backreaction in the

bosonic string. However, the strength of our results indicates that backreaction is a serious

issue that may complicate the picture of closed string tachyon condensation, and these

concerns will certainly also arise in the heterotic case. Sadly, backreaction may spoil the

clean picture of the closed string tachyon as smoothly annihilating dimensions of spacetime,

at least in some regions. To gain a more complete understanding of closed string tachyon

condensation, we will need to understand backreaction due to the production of massless

string modes in the tachyon background. In the meanwhile, our results serve as a caveat

for interpreting tachyon condensation.
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A. BRST quantization in linear dilaton background

For reference, we provide here the BRST quantization of a closed string at the tachyonic

and massless levels in a linear dilaton background. The results are necessary for us to

simplify the string amplitude calculated in section 3.1. We largely follow the discussion for

the Minkowski string in [44].

On the complex plane, the holomorphic and antiholomorphic worldsheet stress tensors

are just given by the (Euclideanization of) 2.15 in the linear dilaton background. Therefore,

the first few Virasoro generators in the scalar sector are

LX
0 =

1

2πα′

∮

dz zT (z) =
α′

4
p2 +

∞
∑

n=1

α−nαn + i
α′

2
Vµp

µ

LX
1 =

1

2πα′

∮

dz z2T (z) =
1

2

∞
∑

n=−∞

α1−nαn + i
√

2α′Vµα
µ
1

LX
−1 =

1

2πα′

∮

dz T (z) =
1

2

∞
∑

−∞

α−1−nαn . (A.1)

The antiholomorphic generators are just the complex conjugates, as usual. We also need

the contribution to the Virasoro operators from the ghosts, which we can copy from [44].

These are

Lg
0 =

∞
∑

n=−∞

n :b−ncn : , Lg
1 =

∞
∑

n=−∞

(2 − n) :bnc1−n : , Lg
−1 = −

∞
∑

n=−∞

(2 + n) :bnc−1−n : .

(A.2)

Here the normal ordering symbol stands for creation-annihilation normal ordering, unlike

in the main text.

The BRST operator for the linear dilaton is then

QB =
∑

n

(

cnL
X
−n + c̃nL̃

X
−n

)

+
∑

m,n

m− n

2

(

:cmcnb−m−n : + : c̃mc̃nb̃−m−n :
)

− c0 − c̃0 .

(A.3)

A physical state |ψ〉 of the string must be in the cohomology of QB and satisfy b0|ψ〉 =

b̃0|ψ〉 = 0 and L0|ψ〉 = L̃0|ψ〉 = 0. We can ensure the b0 condition just by taking the appro-

priate ghost ground state; since L0 = {QB , b0}, the L0 conditions follow. In practice, how-

ever, we’ll find it instructive to examine the complete L0 condition, which works out to be

L0|ψ〉 = 0 ⇒ p2 + 2iV · p = − 4

α′
(N − 1) , (A.4)

where N is the total holomorphic matter plus ghost oscillator excitation number. The

antiholomorphic sector gives the same condition with N → Ñ , but level matching requires

N = Ñ .

At the tachyonic level, the state of the string can only be |0; k〉 with k2+2iV ·k = 4/α′.

In addition,

QB|0; k〉 =
(

c0L0 + c̃0L̃0

)

|0; k〉 = 0 (A.5)
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just because of the mass-shell condition.

At the massless level (k2 + 2iV · k = 0), the most general state is

|ψ〉 =
(

eµνα
µ
−1α̃

ν
−1 + fµα

µ
−1b̃−1 + f̃µb−1α̃

µ
−1 + gµα

µ
−1c̃−1 + g̃µc−1α̃

µ
−1

+hb−1c̃−1 + h̃c−1b̃−1 + βb−1b̃−1 + γc−1c̃−1

)

|0; k〉 . (A.6)

The BRST operator on this state is

QB|ψ〉=
√

α′

2

[

eµν(k+2iV )µc−1α̃
ν
−1+eµν(k+2iV )ναµ

−1c̃−1+f·(k+2iV )c−1b̃−1+f·α−1k ·α̃−1

+f̃ ·(k+2iV )b−1c̃−1+f̃·α̃µ
−1k ·α−1 + g ·(k+2iV )c−1c̃−1+g̃ ·(k+2iV )c−1c̃−1

+hk · α−1c̃−1 + h̃c−1k · α̃−1 + βk · α−1b̃−1 + βb−1k · α̃−1

]

|0; k〉 . (A.7)

If |ψ〉 is BRST-closed, then we must have

eµν(k + 2iV )µ + h̃kν = 0 , eµν(k + 2iV )ν + hkµ = 0 , β = 0 ,

fµ = f̃µ = 0 , g · (k + 2iV ) = g̃ · (k + 2iV ) . (A.8)

The general BRST-exact state at this level is of the form (A.7) with primed coefficients.

By choosing f ′µ and f̃ ′µ, we can therefore gauge away h and h̃ (compare terms in (A.6)

and (A.7)). By choosing e′µν , we can gauge away gµ and g̃µ. Finally, by choosing g′µ and

g̃′µ, we can gauge away γ. We are required to choose β′ = 0 to maintain the condition

fµ = f̃µ = 0. Once we have made these choices, we can make a further transformation

with f ′′µ and f̃ ′′µ as long as f ′′ · (k+ 2iV ) = f̃ ′′ · (k+ 2iV ) = 0, which shifts eµν. We are left

with the following state, conditions, and gauge equivalence:

|ψ〉 = eµνα
µ
−1α̃

ν
−1|0; k〉

0 = eµν(k + 2iV )µ = eµν(k + 2iV )ν

eµν ≃ eµν +

√

α′

2
f ′′µkν +

√

α′

2
kµf̃

′′
ν . (A.9)

The polarization tensor eµν can then be separated into a symmetric graviton, 2-form po-

tential, and dilaton trace parts, as normal.
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